

Health Effects of Exposure to Radiation

Followed by STEPs Dance

Good Science in Plain Language[®]

Webinar Functionality

- Audio and video
 - Will be from the presenters only
 - Use computer or telephone (call in)
 - Computer seems to give the best sound quality
- Use the "Chat" feature to enter comments
- Use the "Questions" feature to ask questions
- Posted on webinar page
 - Video, Q&A answers, copy of the slides
- Follow up email will be sent
 - Topics covered, time of attendance
- It may be possible to change your Zoom view if the controls are hiding the closed captioning.

- What is Radiation?
- Ionizing Radiation
- Health Effects of Ionizing Radiation
- Non-Ionizing Radiation
- Health Effects of Non-Ionizing Radiation
- How Is This Determined?
- Regulators
- For More Information

Matter and Energy

- Matter
 - Has mass
 - Takes up space
- Energy
 - The ability to create change

Radiation and Energy

- Radiation
 - Transfer of energy in a straight line
 - Beams of particles
 - Waves
- Radiation will interact differently with matter depending upon
 - Туре
 - How much energy it has.

Parts of the Atom

- Atom made up of
 - Protons (+)
 - Neutrons (0) and
 - Electrons (-)
- Nucleus
 - Protons and neutrons
 - At the center
 - Electrons orbit the nucleus

Ionizing Radiation

- When radiation strikes matter, it interacts with the atoms of the matter
- Radiation with enough energy can knock electrons out of orbit from the atoms it strikes.

Ionizing Radiation

Radiation that can cause ionization

Ionization: the process of creating ions.

Sources of lonizing Radiation

Where does ionizing radiation come from?

Radioactive atoms

Man-made devices

Types of Ionizing Radiation

Radiation Dose

- The effects of radiation depend on the amount of *energy* the radiation transfers to your body.
- This transfer of energy results in a radiation *dose*.

Radiation Dose

Radiation dose is typically measured in Sievert (Sv)

Sieverts take into account how biologically damaging different types of radiation are

1 Sv is a very large dose. Typically we use the miliSievert (mSv). 1 Sv = 1000 mSv

Interaction with the Body

- Your body is made up of atoms, like any other material object.
- When radiation strikes it, it can interact.
- Radiation interacts with non-living and living material in the same ways.

Basic Structure of a Cell

- A cell contains giant molecules called chromosomes.
- Chromosomes contain information required to create another cell identical to the original cell.
- The units of information in the chromosome are called the genes.
- Each gene is a segment of a complex molecule called DNA (deoxyribonucleic acid).

Biological Effects of Radiation

- Interaction of radiation with a cell depends upon the energy and intensity of radiation and exposure time.
- Radiation may ionize the DNA molecule of the cell.
- This may produce alterations in the biological properties of the cell.

Image from the RCSB PDB (rcsb.org) of the solution structure of fully modified 4'-thioDNA with the sequence of d(CGCGAATTCGCG) (Matsugami, A., Ohyama, T., Inada, M., Katahira, M.) (2007)

Interaction with the Body

- When radiation strikes living tissue, there are a number of possible outcomes:
 - No damage at all
 - Damage to cells that is repaired
 - Damage to cells that leads to cell death
 - Damage to cell chromosomes that is incorrectly repaired ("mutated").

Cell mutations caused by radiation could lead to:

Hereditary (genetic) effects

Somatic effects

Hereditary Effects

 Hereditary or genetic effects are potential health effects future generations might experience as a result of our exposure to radiation.

Hereditary Effects

- Radiation alters the DNA molecule in the egg cells of a female or in the sperm cells of a male.
 - This may cause abnormalities in descendants, such as leukemia and developmental delays.
- Hereditary effects have been demonstrated on laboratory animals.
- Hereditary effects have not been proven on human beings yet.

Somatic effects are experienced by the person exposed to radiation.

A radiation dose has a certain probability of causing a mutation in a cell, which might cause cells to divide in an uncontrolled manner.

Uncontrolled cell division could lead to cancer, which could be fatal.

[®]Good Science in Plain Language www.radiationsafety.ca

Stochastic Somatic Effects

- Radiation exposure increases the likelihood of developing cancer.
- The greater the exposures the greater the likelihood.
- But we cannot be certain that an effect will or will not occur.

Stochastic Somatic Effects

- We know that smoking causes lung cancer.
 - But, Joe smoked sixty a day and lived to be 95!
- Some people develop lung cancer in their life regardless.
 - Only some of these people are smokers.
- Smoking increases the likelihood of developing lung cancer.
 - This is a stochastic effect.

The Risk - Some Numbers

- The risk of developing a fatal cancer as a result of exposure to radiation is approximately 4% per 1000 mSv.
 - Consider a person who worked for 50 years and received 20 mSv per year.
 - This person's total lifetime radiation dose is 1000 mSv.
 - This person will have an extra 4% chance of developing a fatal cancer.

The Risk - Some Numbers

- Approximately 25% of people develop a fatal cancer in their life.
- So, this person's risk of developing a fatal cancer becomes 29% instead of 25%.
- Other professions carry risks too.

* ***** * * * * * * * * * * * ******

Risk of Death for Various Professions

Good Science in Plain Language*

Profession	Risk of Death per Year		
Finance	1 in 60,000		
Service	1 in 40,000		
Trade	1 in 20,000		
2 mSv of radiation per year	1 in 12,000		
Government (includes police and fire)	1 in 11,000		
Manufacturing	1 in 11,000		
Transportation	1 in 4,000		
Construction	1 in 3,000		
20 mSv of radiation per year	1 in 1,200		
Mining	1 in 1,100		
Forestry	1 in 900		
Fishing and Hunting	1 in 500		

From "Canada: Living with Radiation." Reproduced with the permission of the Minister of Public Works and Government Services, 2001.

Occupational Exposures to Ionizing Radiation

Good Science in Plain Language*

Santé

Canada

Health

MEAN RADIATION DOSE (2016): 0.2 MILLISIEVERTS (mSv)

The mean dose of ionizing radiation received by Canadian workers has been **decreasing for the past 5 years** and is at its lowest level since the first report was published in 1978.

You can find the full Report on Occupational Radiation Exposures in Canada at: http://publications.gc.ca/collections/collection_2018/sc-hc/H126-1-2017-eng.pdf

Data and Image from https://www.canada.ca/en/health-canada/services/publications/health-risks-safety/occupational-radiation-exposures.html

Risk of Death From Accidents

Good Science in Plain Language*

Hazard	Risk of Death per Year
Accidents on the road	1 in 5,000
Accidents at home	1 in 11,000
Accidents at work	1 in 24,000
1 mSv per year (annual dose limit for members of the general public)	1 in 20,000
0.05 mSv per year (maximum emission from nuclear facilities in Canada)	1 in 400,000
0.001 mSv per year (average emission from nuclear facilities in Canada)	1 in 20,000,000

From "Canada: Living with Radiation." Reproduced with the permission of the Minister of Public Works and Government Services, 2001.

Deterministic Effects

- A deterministic effect is one which will certainly result from exposure
- There will be a minimum exposure (threshold) above which the effect will occur
- The severity of the effect will depend on the exposure
 - Example: cataract formation, radiation sickness

Chronic Exposure

- Exposure to low doses of radiation over months or years
- Deterministic effects
 - Cataracts
 - Nonspecific life shortening
- Stochastic effects
 - Cancer
 - Genetic effects

Acute Exposure

- Exposure to a high dose delivered within seconds, minutes or days
- Possible deterministic effects
 - Blood changes
 - Nausea
 - Diarrhea
 - Hair-loss
 - Malaise
 - Death

Image by LK Wagner, PhD; Vlietstra et a, CC BY-SA 3.0 via Wikimedia Commons

Acute Dose (mGy)	Effect
< 250	No detectable effects
> 3,000	Chance of death 50% and above
> 6,000	Death an almost certainty, time between exposure and death depends on amount of dose

Radiation Exposure

- We are all exposed to radiation:
 - -Cosmic radiation
 - sun, space
 - Terrestrial radiation
 - soil, rocks
 - -Internally
 - Food, air (radon gas)
 - Medical treatment

 On average, we receive about 2 – 4 mSv per year from background radiation

Summary of Exposures

Public exposures and threshold effects:

Source or Effect	Effective Dose	Source	Effective Dose
Average Dose limit20 mSv (NEW) 1 mSv (public)	20 mSv (NEW)	Chest X-ray	0.1 mSv
	1 mSv (public)	Chest CT	6 mSv
Background Radiation	2-4 mSv/year 0.01 mSv/dav	PET/CT scan	25 mSv
Acute dose which affects the blood > 250 mSv	,	SPECT w/ Tc-99m	10 mSv
	Mammography	2-3 mSv	
4% increased risk of	4000 0	(x4)	
fatal cancer	1000 mSv	Dental X-rays (x4)	0.04 mSv
Cross country plane ride	0.03 mSv	Radiation Therapy	Up to 60 Gy (equivalent dose)

Medical Exposures:

Types of Non-Ionizing Radiation

Thermal Effects

- Temperature is a measure of the average kinetic energy of the atoms and molecules in a system, or thermal energy
- Heat is the transfer of thermal energy from one area to another
- If you heat an object, you cause its atoms or molecules to move around more
- Living things are sensitive to temperature changes
 - Change of state
 - Burns
 - Denaturing of proteins
 - Metabolic rates

Photochemical Effects

HCI
HCI

H2
Cl2

<t

- Chemical reaction
- Initiated by absorbing electromagnetic radiation
 - Infrared
 - Visible
 - Ultraviolet
- Examples:
 - Photosynthesis
 - Formation of vitamin D
 - Creating long molecules called polymers
 - Degradation
 - Photoreception in the eye

Image Community College Consortium for Bioscience Credentials, CC BY 3.0 via Wikimedia Commons

Low Frequency EM Radiation

- Generate electric fields and currents
 - Can interfere with body's fields
 - Low energy levels, unnoticed
 - Over threshold
 - Peripheral vision: faint light flicker
 - Effects similar to static buildup
 - Tingling sensation
 - Very high levels: cardiovascular effects or tissue burns
- Research has not shown chronic exposure has detrimental health effects.

Radiofrequency

Microwave Oven: Consumer Reports, CC BY-SA 4.0 via Wikimedia Commons

- Electromagnetic spectrum in the 100 kHz to 300 GHz in frequency
- Used in
 - telecommunications
 - Mobile phones, base stations, Wi-Fi, 5G, radio, television
 - MRI equipment
 - Microwave ovens
- Research shows effects
 - Heating of exposed tissue
 - Above a threshold: heatstroke, burns

- Lasers produce a beam of light
 - Same frequency (monochromatic)
 - Same phase (coherent)
 - Travel in the same direction
- Cannot see the beams
- Easily reflected
- Dangers: burns to tissue
 - Eye particularly vulnerable
- Non-beam hazards
 - Fire
 - Generating airborne hazards
- Eye/skin protection

Ultraviolet

- More energetic than visible light
- Divided into 3 categories
 - Increasing energy
 - UVA, UVB, UVC
- Sunlight
 - UVC and some UVB filtered by atmosphere
- Health effects
 - Heating
 - Photoelectric
 - Ionizing
- Manifest as
 - Acute: Sunburns, Increased melanin production, vitamin D production, local immunosuppression, eye inflammation and retinal damage
 - Chronic: skin wrinkling, skin aging, skin cancer, cataract, retinal degeneration, eye cancer

- Global scientific research
- International agencies compile and make recommendations
 - Low frequency: keep induced currents below normal body
 - Radio/microwave/infrared: prevent effects due to heating
 - Visible, UV: prevent thermal, negative photochemical
 - Ionizing: prevent acute exposure and keep chronic exposure ALARA
- Recommendations include additional safety factors

- International Commission on Non-Ionizing Radiation Protection (ICNIRP)
- Behavioral changes observed
- Threshold determined
- Safety factors:
 - /10 for occupational
 - /50 for public

INTERNATIONAL COMMISSION ON NON-IONIZING RADIATION PROTECTION

ICNIRP GUIDELINES

FOR LIMITING EXPOSURE TO TIME-VARYING ELECTRIC AND MAGNETIC FIELDS (1 Hz – 100 kHz)

PUBLISHED IN: HEALTH PHYSICS 99(6):818-836; 2010

Regulator

- The Canadian Nuclear Safety Commission (CNSC) regulates the possession and use of all radioactive substances and radiation devices in Canada
 - Owners of radiation sources and devices must have a license from the CNSC
- Equipment which produces nonionizing radiation are generally under provincial jurisdiction, if they are regulated
 - Most x-ray equipment is provincially regulated
 - Very high energy x-ray units are regulated by the CNSC

Radiation Safety Institute of Canada

- The Radiation Safety Institute of Canada is an independent, notfor-profit organization specializing in radiation safety.
- For further information on all types of radiation contact us at:

1-800-263-5803

info@radiationsafety.ca

www.radiationsafety.ca