

RadiationSafety Institute of Canada

Institut de radioprotection du Canada

Lunch, Learn, & Dance Wellness Webinars

February 18, 2021

Uses of Radiation

Followed by STEPs Dance

Good Science in Plain Language[®]

Webinar Functionality

- Audio and video
 - Will be from the presenters only
 - Use computer or telephone (call in)
 - Computer seems to give the best sound quality
- Use the "Chat" feature to enter comments
- Use the "Questions" feature to ask questions
- Posted on webinar page
 - Video, Q&A answers, copy of the slides
- Follow up email will be sent
 - Topics covered, time of attendance
- It may be possible to change your Zoom view if the controls are hiding the closed captioning.

- Matter and energy
- Broad categories of radiation
- Ionizing vs. non-ionizing
- Nuclear particle
- Particle accelerators
- Electromagnetic
- Waves in matter
- Mixed field
- Uses by type
- Uses with multiple types

Matter & Energy

FORMS OF ENERGY

- Matter
 - Has mass
 - Takes up space
- Energy
 - The ability to create change
 - Mechanical energy
 - Kinetic movement
 - Potential stored
- Radiation
 - Transfer of energy in a straight line
 - Beams of particles
 - Waves

Broad Categories of Radiation

- Particles of matter
 - Nuclear
 - Particle beams
- EMF
 - Electromagnetic waves/beams of photons
 - Natural or created by devices
- Waves in matter
 - Need medium to travel
- Mixed field

Ionizing vs. Non-Ionizing

- Any type can be categorized at ionizing or non-ionizing
- Ionizing
 - Enough energy to remove electrons from atoms
 - Can cause damage to large molecules, such as DNA molecules
 - Federally regulated
- Non-ionizing
 - Not enough energy to remove electrons from atoms
 - Damage mainly due to heating or photochemical effects
 - Provincially regulated

Nuclear Material Particles

- Atom made up of
 - Protons (+)
 - Neutrons (0) and
 - Electrons (-)
- Nucleus
 - Protons and neutrons
 - At the center
 - Electrons orbit the nucleus
- Most elements stable
 - Unstable nuclei emit radiation to become stable
- Alpha, beta, neutron, gamma radiation are all ionizing.

Alpha (a) Radiation

Roughly 7 cm in air

Stopped by a sheet of paper

E

Absorbed in dead layer of skin

Beta (β) Radiation

Roughly 200 cm in air

Stopped by a glass and plastic

Can reach the living layer of skin

- Neutrons ejected from the nucleus of unstable atoms.
- Do not have charge
 - Hit electrons
 - Hit nuclei
- Only type that can make material radioactive
- Free neutrons decay into other radiation
- Very damaging

Particle Accelerators

- Humans can make beams of charged particles
- Not nuclear

- Can interact in the accelerator to produce nuclear
- Output can be the material particles or photons

Electromagnetic

THE ELECTROMAGNETIC SPECTRUM

Gamma & X-Ray

X-Ray Production

Mixed Field

- Common
 - Alpha or beta emission is followed by gamma
 - Neutron irradiation can produce gamma
- Cosmic radiation
 - Particles that come from space
 - Also receive electromagnetic
 - Naturally occurring
 - Atmosphere protects Earth

Waves in Matter

- Energy can be transmitted
- Need a medium
- Technically radiation
- Examples
 - Sound
 - Ultrasound
 - Seismic waves
- Not ionizing

Alpha Radiation Uses

- Smoke detectors
 - Americium
- Static eliminators
 - Polonium
 - Positive charge attracts electrons
- Spacecraft
 - Plutonium for propulsion
 - Thermoelectric heaters
- Energy source for remote areas
 - Strontium
 - Remote sensing stations
 - Buoys
 - Offshore oil platforms

Beta Radiation Uses

- Short distances
- Can trigger gamma emission
- Uses
 - Cancer treatments
 - Nuclear gauges
 - PET scanners
 - Material tagged with isotope
 - Short half-lives
 - C-11, N-13, O-15, or F-18
 - Ga-68, Zr-89, Rb-82

Neutron Radiation Uses

- Various techniques using neutrons
 - Composition of materials
 - Crystalline structures
 - Thin films
 - Engineering analysis of strain
 - Imaging and 3D imaging of materials
- Production of isotopes
 - Medical applications
- Nuclear Energy Production
- Nuclear Gauges

Nuclear Power

- Very efficient compared to electricity production by fossil fuels (coal, oil)
- Produces relatively small volume of waste
- But fission process produces radiation and radioactive byproducts

Nuclear Power in Canada – the CANDU Reactor

- CANDU means Canada Deuterium
 Uranium
- Uses natural uranium (99.3% U-238, 0.7% U-235)
- Uses heavy water D₂O (versus H₂O) to cool the fuel and moderate (slow down) the neutrons
- Currently 19 operating reactors in Canada – 18 in Ontario, 1 in New Brunswick
- 10 CANDU reactors globally

What is *Nuclear Fission ?*

Good Science in Plain Language*

Radiation Safety Institute of Canada Institut de radioprotection du Canada

Particle Accelerator Uses

- Particle accelerators use electric circuits and magnetic fields to speed charged particles to great speeds.
- They are used in
 - Research
 - Isotope production
 - Medical treatment

LINAC Copyright © Synchrotron Soleil, used with permission

Electromagnetic Uses

	Wavelength (m)	Frequency (Hz)	Energy (J)	
Radio	> 0.1 m	< 3 x 10 ⁹	< 2 x 10 ⁻²⁴	
Microwave	1 x 10 ⁻³ - 1 x 10 ⁻¹	3 x 10 ⁹ - 3 x 10 ¹¹	2 x 10 ⁻²⁴ - 2 x 10 ⁻²²	A CARACTER CONTRACTOR
Infrared	7 x 10 ⁻⁷ - 1 x 10 ⁻³	3 x 10 ¹¹ - 4 x 10 ¹⁴	2 x 10 ⁻²² - 3 x 10 ⁻¹⁹	
Optical	4 x 10 ⁻⁷ - 7 x 10 ⁻⁷	4 x 10 ¹⁴ - 7.5 x 10 ¹⁴	3 x 10 ⁻¹⁹ - 5 x 10 ⁻¹⁹	
UV	1 x 10 ⁻⁸ - 4 x 10 ⁻⁷	7.5 x 10 ¹⁴ - 3 x 10 ¹⁶	5 x 10 ⁻¹⁹ - 2 x 10 ⁻¹⁷	
X-ray	1 x 10 ⁻¹¹ - 1 x 10 ⁻⁸	3 x 10 ¹⁶ - 3 x 10 ¹⁹	2 x 10 ⁻¹⁷ - 2 x 10 ⁻¹⁴	
Gamma-ray	< 1 x 10 ⁻¹¹	> 3 x 10 ¹⁹	> 2 x 10 ⁻¹⁴	the second se

Data courtesy of NASA

Radio Uses

- Can pass through the atmosphere and most building materials
- Bounces off ionosphere
- Can be easily reflected
- Non-destructive
- Used for
 - Communications
 - Heating
 - Remote controls
 - MRI Scans

Image courtesy Jan Ainali, CC BY 3.0

Microwave Uses

Image courtesy brewbooks, CC BY-SA 2.0

- Subset of radiofrequency
- Line of sight
- Small antennae
- Uses
 - Heating
 - Communications
 - Satellite
 - Radar

- Predates laser
- Microwave Amplification by
 Stimulated Emission of Radiation
- Creates coherent beam of microwave radiation
- Used in
 - Satellite and air to air communications
 - Radio telescopes
 - Radar

- Just below red light in terms of energy and frequency
- Heats material
- Uses
 - Electric heaters
 - Cooking
 - Remote controls
 - Thermal imaging cameras

Image courtesy Black Hills Thermal Imaging, CC BY-SA 3.0

- Detected by the human eye
- Wavelength: 400 to 750 nm.
- Colour order
 - Red
 - Orange
 - Yellow
 - Green
 - Blue
 - Indigo
 - Violet
- Can transmit through glass
- Easily reflected off smooth surfaces

Image Copyright © 2004 David Monniaux.

- Light Amplification by Stimulated Emission of Radiation
- Light reflects back and forth
 - Leave chamber
 - Monochromatic
 - Coherent
 - One direction
- Uses many
 - Electronics
 - Research
 - Dermatology
 - Tattoo & hair removal
 - Surgery
 - Holography
 - Weapons
 - Communications

Ultraviolet (UV) Uses

- Just above violet light in terms of energy and frequency
- Higher energies are ionizing
- Exposure can cause
 - Cataracts
 - Cancer
- Used in
 - Tanning beds
 - Nail polish curing
 - Fluorescent pigments and dyes
 - Kill bacteria/viruses
- Insects, other animals

Gamma (ɣ) Uses

Image Courtesy of Mosaic

- Medical
 - Cancer treatment
 - Imaging
 - Sentinel node dissection
- Sterilization of objects
 - Food
 - Art
- Industry
 - Imaging
 - Nuclear gauges
 - Crosslinking of polymers
- Materials analysis
 - Spectrometry

- XRF materials analysis
- Analytical x-ray materials analysis
- Cabinet x-ray for food quality control
- Cabinet x-ray for baggage scanning
- Cabinet x-ray for electronics part inspection

Uses of X-rays in Health Care

Computed Tomography (CT) scanning machines

Takes many x-rays from different angles

A computer can put all the images together to create one 3-D image

Mixed Radiation Used in Healthcare

Nuclear gauges

- Beta, neutron, or gamma radiation
- Used to determine
 - Thickness
 - Density
 - Fill level
- Can be
 - Fixed
 - Portable
- Used in
 - Construction
 - Mining, oil extraction
 - Manufacturing

Fixed - Level Gauge

Contact Information

Canadian Nuclear Safety Commission

website: http://www.cnsc-ccsn.gc.ca/ phone: 1-800-668-5284 email: info@cnsc-ccsn.gc.ca

Radiation Protection Bureau

website: http://www.hc-sc.gc.ca/ahc-asc/branch-dirgen/hecsdgsesc/sep-psm/rpb-br-eng.php phone: 1-866-225-0709 email: ccrpb-pcrpcc@hc-sc.gc.ca

Radiation Safety Institute of Canada

website: http://www.radiationsafety.ca/ phone: 1-800-263-5803 email: info@radiationsafety.ca

Radiation Safety Institute of Canada

- The Radiation Safety Institute of Canada is an independent, notfor-profit organization specializing in radiation safety.
- For further information on all types of radiation contact us at:

1-800-263-5803

info@radiationsafety.ca

www.radiationsafety.ca