

Understanding Radiation

Followed by STEPs Dance

Good Science in Plain Language[®]

Webinar Functionality

- Audio and video
 - Will be from the presenters only
 - Use computer or telephone (call in)
 - Computer seems to give the best sound quality
- Use the "Chat" feature to enter comments
- Use the "Questions" feature to ask questions
- Follow up email will be sent
 - Topics covered
 - Time of attendance
 - Q&A answers
 - Link to a copy of the slides
- It may be possible to change your Zoom view if the controls are hiding the closed captioning.

Outline

- What is radiation?
- Different types of radiation
- Activity and Half-life
- Units of radiation dose
- Health effects of exposure to radiation
- Dose limits
- Common radiation exposures
- Regulatory bodies in Canada

Use of Radiation in Canada

- 160,000+ Canadians are monitored annually for workplace exposure to radiation
 - Only 16% are part of the nuclear power industry
- 84% come from
 - Health Care (technologists, nurses, doctors)
 - Industry (construction, manufacturing, mining, etc)
 - Education and Research Facilities
- But what IS radiation?

Radiation and Energy

- Radiation can be interpreted as a form of energy.
- Radiation will interact differently with matter depending upon how much energy it has.

Non-Ionizing (Low Energy) Radiation

Radiation that does not have enough energy to break bonds in matter.

When radiation strikes matter, it interacts with the atoms of the matter.

Radiation with enough energy can knock **electrons** out of orbit from the atoms it strikes.

Sources of Radiation

Where does ionizing radiation come from?

Radioactive atoms

Man-made devices

- Alpha radiation is highly ionizing.
 - It can easily strip electrons from atoms.
- Alpha radiation does not travel far in matter:

- Beta radiation is less ionizing than alpha radiation.
- It can travel farther in matter than alpha:

Gamma/X-Ray Radiation

Gamma rays and x-rays are electromagnetic radiation just like **visible light**.

- Gamma rays are emitted from the nuclei of radioactive atoms.
 - The emission of a gamma ray is **always** preceded by either a beta or an alpha decay.
- X-rays are created by forcing electrons to hit a target.

How Are X-rays Produced?

- Get a fast moving (energetic) electrons to hit a target material.
- They will slow down, releasing energy and creating x-rays.

- Gamma rays and x-rays are **ionizing** radiation.
- They do not have a range.
 - They can theoretically travel forever.
- As they pass through matter, their *intensity* is reduced.

- Activity: The rate of radioactive decay.
 - The number of radionuclide decays per unit of time.

The unit of activity is the **becquerel** (Bq).

1 Bq = 1 radioactive decay per second

Curie (Ci): The historic unit for activity. 1 Ci = 37,000,000,000 Bq

Half-Life

- *Half-life*: The time required for a radioactive sample to lose 50% of its activity by radioactive decay.
 - Each radioactive atom has its own unique half-life, regardless of the quantity or form.
 - Solid, liquid, gas
 - Element or compound

Radiation Dose

- The effects of radiation depend on the amount of *energy* the radiation transfers to your body.
 - Energy is transferred when the radiation knocks electrons out of orbit
 - This transfer of energy results in a radiation *dose*.

- Absorbed dose is a measure of the amount of energy radiation deposits in the body, per unit mass.
- The unit of absorbed dose, is called gray (Gy).
- 1 Gy is a very large dose.
 mGy or μGy are used more often

- The *equivalent dose* is the *absorbed dose* multiplied by a radiation weighting factor
- The radiation weighting factor accounts for the different biological damage produced by different types of radiation
- Unit of equivalent dose:
 millisieverts (mSv)

- 1 unit of *absorbed dose* from gamma, x-ray and beta radiation produce approximately the same amount of damage in tissue
- 1 unit of *absorbed dose* from internal **alpha** radiation causes approximately **20 times** more damage to tissue than 1 unit of absorbed dose from gamma, x-ray or beta radiation

1 mGy of alpha = 20 mGy gamma = 20 mGy beta

• The concept of **equivalent dose** takes this into account

1 mSv of alpha = 1 mSv gamma = 1 mSv beta

- The *effective dose* is the *equivalent dose* multiplied by a tissue weighting factor, to assess dose on the scale of the whole body
- The tissue weighting factor helps to account for the varying sensitivities to radiation exposure of the different tissues and organs
- The unit of effective dose is also the *millisievert* (mSv)

Interaction with the Body

- When radiation strikes living tissue, there are a number of possible outcomes:
 - No damage at all
 - Damage to cells that is repaired
 - Damage to cells that leads to cell death
 - Causes *deterministic effects* when exposed to large amounts of radiation in a short period of time
 - Damage to cell chromosomes that is incorrectly repaired ("mutated")
 - Probability increases with increased exposure to radiation
 - Main concern: mutation leading to cancer

- Radiation exposure increases the *likelihood* of developing cancer.
- The greater the exposures the greater is the likelihood.
- But we cannot be certain that an effect will or will not occur.

- We know that smoking causes lung cancer.
 - But, Joe smoked sixty a day and lived to be 95!
- Some people develop lung cancer in their life anyway.
 - Only some of these people are smokers.
 - Smoking increases the likelihood of developing lung cancer.
 - This is a stochastic effect.

Cancer Risk from Radiation

- The risk of developing a fatal cancer as a result of exposure to radiation is approximately 4% per 1000 mSv.
 - Consider a person who worked for 50 years and received 20 mSv per year.
 - This person's total lifetime radiation dose is 1000 mSv.
 - This person will have an extra 4% chance of developing a fatal cancer.

Effective Dose Limits

Person	Period	Effective Dose (mSv)
Nuclear Energy Worker (NEW)	1-yr dosimetry period	50
	5-yr dosimetry period	100
Pregnant NEW	Balance of the pregnancy	4
A person who is not a nuclear energy worker	1 calendar year	1

• Radiation Protection Regulations, Section 13(1)

Chronic Exposure

- Exposure to low doses of radiation over months or years
 - Deterministic effects
 - Cataracts
 - Probabilistic effects
 - Cancer

Acute Exposure

- Exposure to a high dose delivered within seconds, minutes or days
- Possible *deterministic effects*
 - Blood changes
 - Nausea
 - Diarrhea
 - Hair-loss
 - Malaise
 - Death

Acute Exposure

Acute Dose (mGy)	Effect
< 250	No detectable effects
> 3,000	Chance of death 50% and above
> 6,000	Death an almost certainty, time between exposure and death depends on amount of dose

Radiation Exposure

- We are all exposed to radiation:
 - Cosmic radiation
 - sun, space
 - Terrestrial radiation
 - soil, rocks
 - Internally
 - Food, air (radon gas)
 - Medical treatment

 On average, we receive about 2 – 4 mSv per year from background radiation

Regulator

- The Canadian Nuclear Safety Commission (CNSC) regulates the possession and use of all radioactive substances and radiation devices in Canada
 - Owners of radiation sources and devices must have a licence from the CNSC
- X-ray systems are generally under provincial jurisdiction
 - For example, in Ontario the Ministry of Labour regulates the use of most X-rays.

Radiation Safety Institute of Canada

- The Radiation Safety Institute of Canada is an independent, not-for-profit organization specializing in radiation safety.
- For further information on all types of radiation contact us at:

1-800-263-5803

info@radiationsafety.ca

www.radiationsafety.ca