

Radiation Protection in the Operating Room

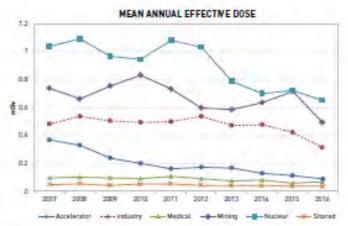
Followed by STEPs Dance

Good Science in Plain Language[®]

Webinar Functionality

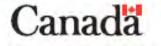
- Audio and video
 - Will be from the presenters only
 - Use computer or telephone (call in)
 - Computer seems to give the best sound quality
- Use the "Chat" feature to enter comments
- Use the "Questions" feature to ask questions
- Posted on webinar page
 - Video, Q&A answers, copy of the slides
- Follow up email will be sent
 - Topics covered, time of attendance
- It may be possible to change your Zoom view if the controls are hiding the closed captioning.


- Sources of radiation
- Health effects of radiation
- Regulators
- Radiation protection principles
- Radiation Safety in the OR
- Dosimetry


Occupational Exposures to Ionizing Radiation

Good Science in Plain Language*

The number of workers has increased in 2016 (compared with 2015) for the following sectors: Particle accelerator, Medical and Nuclear. It has decreased for these sectors: Industry, Mining and Shared.

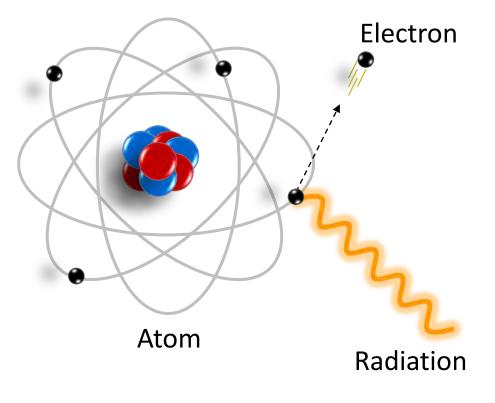


The mean annual effective dose for each sector tends to decrease over time, with few exceptions. For 2016, the Medical and Shared sectors had small increases [less than 0.01 mSv each], while the other sectors had decreases.

You can find the full Report on Decupational Radiation Exposures in Canada at: http://publications.gc.ca/collections/collection_2018/sc-hc/H126-1-2017-eng.pdf

In the Operating Room...

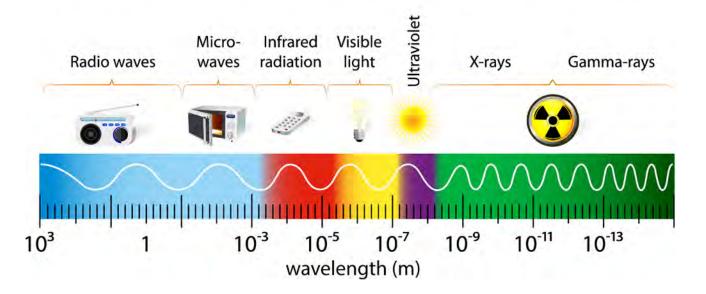
Sentinel Node Biopsy


- Patient injected with radioactive material which emits gamma rays
- Use a hand-held meter to measure the radiation coming out of the patient

Fluoroscopy

- An X-ray machine is used to image the patient
- An image intensifier records the radiation that goes through the patient

Ionizing vs. Non-Ionizing

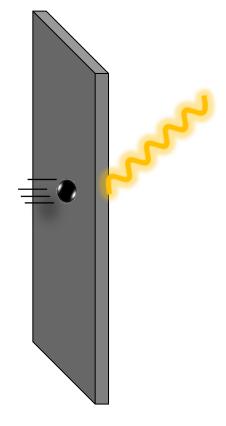

- Any type can be categorized at ionizing or non-ionizing
- Ionizing
 - Enough energy to remove electrons from atoms
 - Can cause damage to large molecules, such as DNA molecules
- Non-ionizing
 - Not enough energy to remove electrons from atoms
 - Damage mainly due to heating or photochemical effects

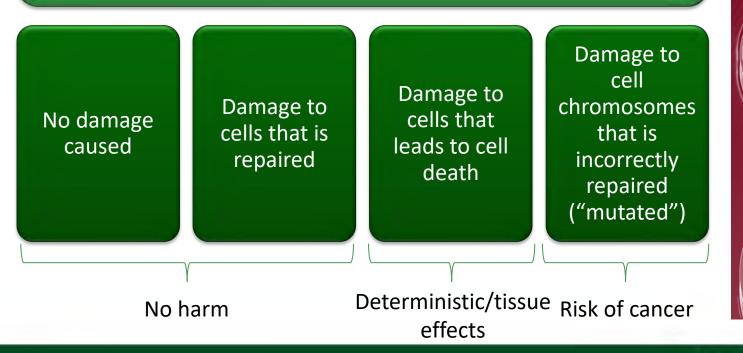
7

Gamma/X-Ray Radiation

THE ELECTROMAGNETIC SPECTRUM

Gamma rays and x-rays are electromagnetic radiation just like visible light.


Gamma & X-Ray


X-Ray Production

Good Science in Plain Language*

When radiation strikes living tissue, there are a number of possible outcomes:

Radiation Safety

Institute of Canada

Stochastic Effect: Cancer

- Radiation exposure increases the *likelihood* of developing cancer.
- The greater the exposure, the greater is the chance.
- Effect is similar to the fact that smoking increases the risk of lung cancer

Cancer Risk from Radiation

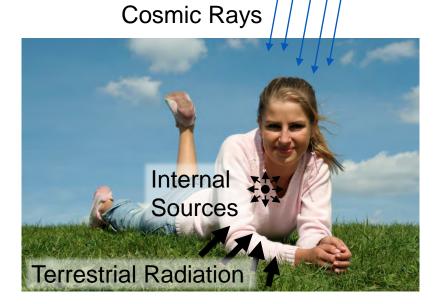
* **** ****** * * * * * * * * * * * ~ <u>^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ </u>

- The risk of developing a fatal cancer as a result of exposure to radiation is approximately 4% per 1000 mSv.
 - Consider a person who worked for 50 years and received 20 mSv per year.
 - This person's total lifetime radiation dose is 1000 mSv.
 - This person will have an extra 4% chance of developing a fatal cancer.

Regulator

- The Canadian Nuclear Safety Commission (CNSC) regulates the possession and use of all radioactive substances and radiation devices in Canada
 - Owners of radiation sources and devices must have a license from the CNSC
- Equipment which produces nonionizing radiation are generally under provincial jurisdiction, if they are regulated
 - Most x-ray equipment is provincially regulated
 - Very high energy x-ray units are regulated by the CNSC

Effective Dose Limits


| Person | Period | CNSC Effective
Dose Limit | Ontario Effective
Dose Limit |
|--|--------------------------|------------------------------|---------------------------------|
| Nuclear Energy
Worker / X-Ray
Worker | 1-yr dosimetry
period | 50 mSv | 50 mSv |
| | 5-yr dosimetry
period | 100 mSv | n/a |
| Pregnant NEW / X-
Ray Worker | Balance of the pregnancy | 4 mSv | 5 mSv |
| A person who is not
a designated worker | 1 calendar year | 1 mSv | 5 mSv |

ALARA: As Low As Reasonably Achievable

Radiation Exposure

- We are all exposed to radiation:
 - -Cosmic radiation
 - sun, space
 - Terrestrial radiation
 - soil, rocks
 - -Internally
 - Food, air (radon gas)
 - Medical treatment

 On average, we receive about 2 – 4 mSv per year from background radiation

Summary of Exposures

Public exposures and threshold effects:

| Source or Effect | Effective Dose |
|------------------------------------|--------------------------------|
| Average Dose limit | 20 mSv (NEW)
1 mSv (public) |
| Background Radiation | 2-4 mSv/year
0.01 mSv/day |
| Acute dose which affects the blood | > 250 mSv |
| 4% increased risk of fatal cancer | 1000 mSv |
| Cross country plane ride | 0.03 mSv |

Medical Exposures:

| Source | Effective Dose |
|-------------------|----------------------------------|
| Chest X-ray | 0.1 mSv |
| Chest CT | 6 mSv |
| PET/CT scan | 23 mSv |
| SPECT w/ Tc-99m | 10 mSv |
| Mammography | 0.2-0.3 mSv |
| Dental X-rays | 0.005 mSv |
| Radiation Therapy | Up to 60 Gy
(equivalent dose) |

Deterministic Effects: Acute Exposure

- Exposure to a high dose delivered within seconds, minutes or days
- Possible deterministic effects
 - Cataracts
 - Blood changes
 - Nausea
 - Diarrhea
 - Hair-loss
 - Skin damage
 - Death

Acute Exposure

| Acute Dose
(mGy) | Effect |
|---------------------|--|
| < 250 | No detectable effects |
| > 3,500 | Chance of death 50% and above |
| > 6,000 | Death an almost certainty, time
between exposure and death
depends on amount of dose |

- Threshold: 0.5 Gy (500 mGy)
- New ICRP recommendation:
 - 20 mSv per year on average
- CNSC annual dose limit for the lens of the eye for designated workers:
 - 50 mSv per year
- Provinces each have dose limits for x-rays
 - Ontario: 150 mSv/hear; 50 mSv/year

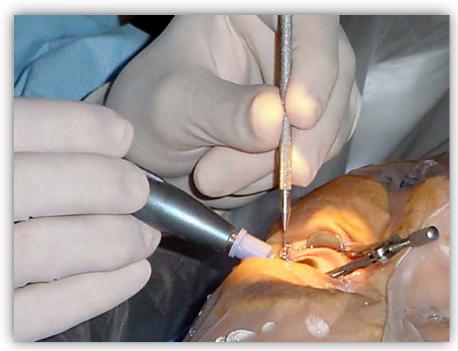


Image Public Domain via Wikimedia Commons

Radiation Protection Principles

- Fundamentals of radiation protection
 - Avoid acute effects
 - Minimize risk of cancer
 - Keep exposures ALARA
- External radiation exposure can be decreased by:
 - Time
 - Distance
 - Shielding

- Limit the time a person spends near a source
 - Efficient work practices should be used
- Limit the amount of time the source is generating x-rays
 - Take as few fluoroscopic images as possible
 - Use different pulse modes

The intensity of **x-ray** and **gamma ray** fields decreases as you increase your distance from the source.

Taking even a few steps back from a patient or an Xray tube will quickly reduce your dose.

> Good Science in Plain Language® www.radiationsafety.ca

Distance

- Shielding is the main source of protection from exposure to xrays and gamma rays.
- X-rays and gamma rays cannot be 100% stopped.
- Shielding reduces exposure by attenuating radiation.

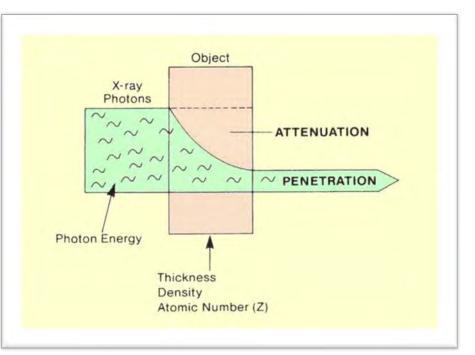
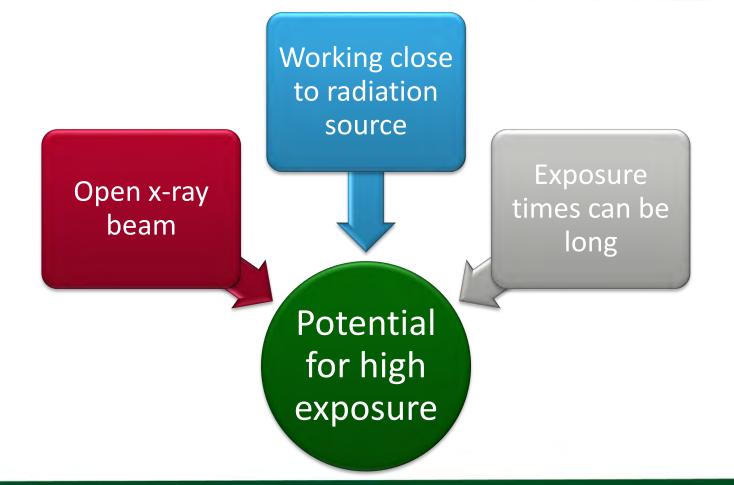


Image from http://www.sprawls.org/ppmi2/RADPEN/, open access.

Sentinel Node Biopsy


Time: Efficient work practices will reduce the time spent around the patient

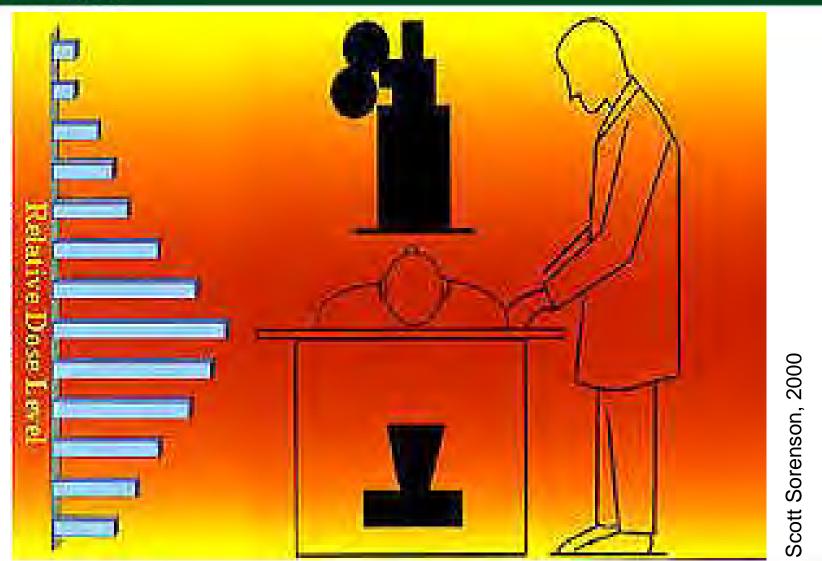
Distance: When you are not taking a measurement, take a few steps back from the patient

Shielding: Lead aprons, thyroid collars, etc can be worn to shield your body from the radiation

Occupational Risk: Fluoroscopy

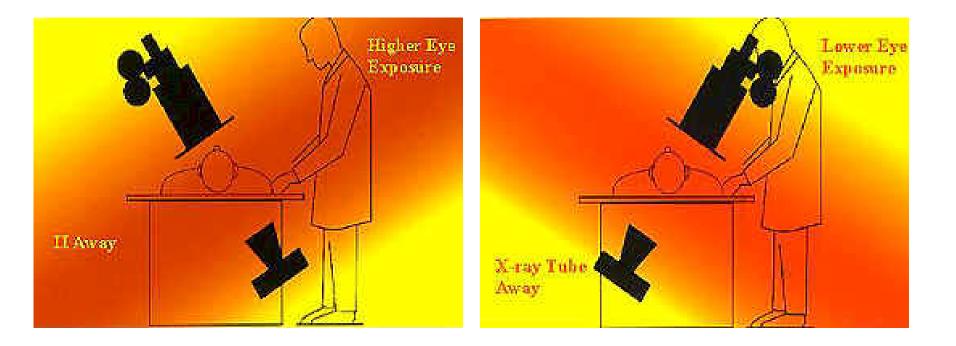
Good Science in Plain Language*

Fluoroscopy machines use an X-ray tube


- The patient is exposed to the primary beam
- Most of the radiation others receive in the OR is from scattered radiation
- Collimation

Radiation exposure to **everyone** in the room is directly proportional to the ON-time of the unit

- Keep tube current as low as possible
- Keep tube potential fairly high



Good Science in Plain Language*

Scott Sorenson, 2000

- Shielding and dosimetry are critical in fluoroscopy
- Shielding:
 - Lead curtains can be installed on the patient table
 - Lead aprons should always be worn and should cover the thyroid, core, and reproductive area
 - A lead glass screen will absorb scattered radiation
 - Goggles can be used to protect the eyes

www.ultraray.com

Dosimeters

- One dosimeter should be worn underneath the apron
- Ring or bracelet dosimeters can keep track of dose to the hands
- One dosimeter should be worn on the collar, above the apron, to measure radiation to the eyes

- It is strongly recommended that those working at multiple locations have a different dosimeter for each location
 - In case of an unusual exposure, this will make it easier to determine where the exposure was received
- Dose recorded from each dosimeter must be communicated to the employee.

Canada.ca > Health > Health risks and safety > Radiation and your health

National Dosimetry Services

National Dosimetry Services (NDS) provides Canadian workers with a full line of dosimetry products and services to monitor levels of ionizing radiation.

- The three CNSC licensed service providers report dose to the National Dose Registry (NDR)
 - National Dosimetry Services, Heath Canada
 - Landauer

FR

Q

- Mirion Technologies
- The National Dose Registry keeps a record of individual cumulative dose over multiple licensed service providers and multiple employers

U.Z MEAN RADIATION DOSE (2016): MILLISIEVERTS (mSv) The mean dose of ionizing radiation received by Canadian workers has been decreasing

Data from https://www.canada.ca/en/health-canada/services/publications/health-risks-safety/occupational-radiation-exposures.html

for the past 5 years and is at its lowest level since the first report was published in 1978.

More Information

≡ MENU

- Research studies
- International Agencies
- Radiation Safety Officer
- X-ray Safety Officer
- RSIC

Radiation Safety Institute of Canada

- The Radiation Safety Institute of Canada is an independent, notfor-profit organization specializing in radiation safety.
- For further information on all types of radiation contact us at: 1-800-263-5803

info@radiationsafety.ca

www.radiationsafety.ca