

PPE and Dosimetry

Followed by Araguacu Latin Dance Co.

Good Science in Plain Language[®]

Webinar Functionality

- Audio and video
 - Will be from the presenters only
 - Use computer or telephone (call in)
 - Computer seems to give the best sound quality
- Use the "Chat" feature to enter comments
- Use the "Questions" feature to ask questions
- Posted on webinar page
 - Video, Q&A answers, copy of the slides
- Follow up email will be sent
 - Topics covered, time of attendance
- It may be possible to change your Zoom view if the controls are hiding the closed captioning.

- What is Radiation?
- Ionizing vs. Non-ionizing
- Particle vs. Electromagnetic
- Aspects of a Radiation Protection Program
- Regulation
- Internal vs. External Exposures
- PPE Types
- Dosimeters
- PPE and Dosimetry by Radiation Type
- How to find out more

What is Radiation?

- Matter
 - Mass
 - Volume
- Energy
 - Ability to make changes in matter
- Radiation
 - Energy moving out from a source
 - Material particles
 - Electromagnetic
 - Electromagnetic waves
 - photos

Nuclear energy (nuclear fusion in stars) Magnetic energy

Kinetic energy Chemical

energy

Therma energy

Potential

energy

FORMS OF ENERGY

Ionizing vs. Non-Ionizing

Non-Ionizing

- Will not remove electrons from orbit
- Heating
- Photochemical effects
- Electromagnetic radiation
 - Radio mid UV

lonizing

- Electrons can be removed from orbit
- Stochastic
- Deterministic/tissue
- Electromagnetic radiation
 - Mid UV ¥/x-ray
- Particles (α, β, neutron)

Particle vs. Electromagnetic

x-ray

Particles

radioisotopes

Electromagnetic

radio, microwave, infrared, visible, UV, Y

- Photon energy related to wavelength
- UVB and above ionizing
- X-ray produced by machines, in gamma range

CNSC Mandate

Regulate use of	To Protect	To Implement	To Disseminate
 Nuclear energy Nuclear materials Prescribed equipment Prescribed information 	 Health Safety Security Environment 	 International commitments Peaceful use Nuclear energy 	 Scientific, technical, and regulatory information To public

Regulation

Good Science in Plain Language*

Province or Territory	Acts and Regulations Addressing Radiation Safety		
Alberta	Radiation Protection Act, Radiation Protection Regulations		
British Columbia	Workers Compensation Act, Occupational Health and Safety Regulation		
Manitoba	The Radiation Protection Act and Regulations		
New Brunswick	Radiation listed as a health hazard in general terms in Public Health Act. No		
	specific act or regulations.		
Newfoundland and Labrador	Radiation Health and Safety Act and Regulations		
Northwest Territories	Safety Act, Occupational Health & Safety regulations, Part 23		
Nova Scotia	Medical Imaging and Radiation Therapy Professionals Act mentions radiation		
	safety, but no regulations regarding specifics to date		
Nunavut	Safety Act, Occupational Health & Safety regulations, Part 23		
Ontario	Occupation Health and Safety Act, Regulation 861 and the Healing Arts		
	Radiation Protection Act, Regulation 543		
Prince Edward Island	Occupational Health and Safety Act General Regulations for non-ionizing		
	radiation; otherwise, no regulations		
Quebec	Occupational Health and Safety Act and Regulations has basic expectations		
	for dosimetry and protection as a contaminant		
Saskatchewan	The Saskatchewan Employment Act Part V, The Radiation Health and Safety		
	Regulations, Occupational Health and Safety Regulations, Health Hazard		
	Regulations		
Yukon	Yukon Occupational Health and Safety Act, Radiation Protection Regulations		

Aspects of a Radiation Protection Program

- Doses ALARA
- Management control
- Personnel qualification and training
- Control of occupational and public exposure
- Planning for unusual situations

Internal vs. External Exposure

Mikael Häggström, Public domain, via Wikimedia Commons

Radiation Protection Principles

External radiation exposure can be decreased by:

12

A –thyroid protection collar;

- B outside personal dosimeter (in the pocket);
- C protective eyeglasses;
- D radiation panoramic full-face mask for face shielding (preferred to eyeglasses);
- E protective one-piece apron;
- F additional protection for the gonads.

Image from Caluk, J. (2013) doi:10.5772/54033

Personal Protective Equipment

Care and Use of PPE

- Check for damage
 Record/report
- Annual screening of lead PPE
- Proper fit
- Storage
 - Hung properly
 - Cool, dry
 - Eye shields in cases
- Clean as directed
- Follow disposal guidelines
- Check service life

Radiation Dose

- Energy given to the body by radiation per unit mass
- Measure in Gray (Gy)

Absorbed Dose

Equivalent Dose

- Absorbed dose that also takes the type of radiation into account.
- Measure in Sieverts (Sv)

- Equivalent dose that also looks at the sensitivity of specific tissues to radiation.
- Measure in Sieverts (Sv)

Effective Dose

Dosimetry

- Ionizing radiation
 - Cannot detect with our senses
 - Effects can occur years later
- Different types
 - Type of radiation
 - Location
- Internal or external

Effective Dose Limits

Person	Period	CNSC Effective Dose Limit	Ontario Effective Dose Limit
Nuclear Energy Worker / X-Ray Worker	1-yr dosimetry period	50 mSv	50 mSv
	5-yr dosimetry period	100 mSv	n/a
Pregnant NEW / X- Ray Worker	Balance of the pregnancy	4 mSv	5 mSv
A person who is not a designated worker	1 calendar year	1 mSv	5 mSv

ALARA: As Low As Reasonably Achievable

External Dosimetry

- Source external to the body
- Radiation can penetrate skin
 - Beta
 - Ionizing electromagnetic
 - Neutron

Dosimeters

- Used to measure ionizing radiation dose
- Passive or active
- Sample collection (indirect) or personal

Dosimeters

- Different strengths and weaknesses
 - Energy and angle dependence
 - Type of radiation
 - Fading
 - Response to dose
 - Minimum dose measured
 - Single or multiple use
 - Dose saved or time or not
 - Ease of wear and durability

- Contains a chip
- Radiation causes electron release
- Electrons trapped in doping centers in excited state
- Chip heated in a reader
- Trapped electrons return to ground state
- Visible light emitted and detected
- Light curve analyzed to determine dose
- Come in badges, bracelets, rings (extremity)

- TLD systems require calibration to be accurate
- Signal fade
- Linear over a wide range
- Can be reused
- Can only be read once
- Can be read on site

- Newer technology
- Works similarly to TLD
- Light is used to stimulate the trapped electrons
- Not affected by typical temperature variations
- More sensitive
- Can be reread
 - Can be stored for several years
- Can be reused
- More expensive
- Can be read on site

- Real-time measurement
 - Diode
 - Geiger-Mueller
- Not typically official dose
- Alarms

Solid-State Nuclear Track

- Neutrons
 - Interact with matter differently
 - Interact more with elements with light nuclei
- Solid-state nuclear track
 - CR-39 plastic
 - Interaction produces charged particles
 - Tracks made visible by chemical etching
 - Tracks imaged
 - Number of tracks related to dose
- Large angular dependence
- Not sensitive to low doses

Portable Neutron Survey

- Area monitor
- Contains material which interacts with neutrons
- Personal dose is calculated rather than read

Dosimeter Placement

- Badge dosimeter should be worn underneath the apron/PPE
- Ring or bracelet dosimeters can keep track of dose to the hands
- Eye dose measured using a dosimeter on the collar above the apron/PPE

Dosimeter Best Practice

- Have a different dosimeter for each work location
 - In case of an unusual exposure
 - Each dosimeter reported to employee.
- Do not expose dosimeters to extreme conditions
- Store as directed
 - away from radiation sources
- Do NOT share dosimeters
 - Extras should be available

Internal Dosimetry

- Whole/partial body counters
 - Gamma
- Body excretions
 - Activity concentration
- Activity in the air
 - Personal or fixed

Picture from National Archives at College Park, Public domain, via Wikimedia Commons

Personal Alpha Track

- Uranium produces radon
- Radon and progeny are carcinogenic
- 2nd leading cause of lung cancer after smoking
- PAD
 - Film shows tracks
 - Tracks correlate with dose
 - Actively draw in air
 - Charged after use

Internal Dosimetry

FIG. 5. General scheme for the assessment of internal doses from monitoring measurements in emergencies.

Image from IAEA Safety Standards Series No GSG-7

Licensed Dosimetry Providers

National Dosimetry Services

National Dosimetry Services (NDS) provides Canadian workers with a full line of dosimetry products and services to monitor levels of ionizing radiation.

- CNSC licensed service providers report dose to the National Dose Registry (NDR)
 - National Dosimetry Services, Heath Canada
 - Landauer
 - Mirion Technologies
- The National Dose Registry keeps a record of individual cumulative dose over multiple licensed service providers and multiple employers

- \bullet Ejected α particles will not penetrate dead layer of skin
- PPE blocks routes of entry
- Radioisotopes can contaminate PPE

Dosimetry

- Personal Alpha Dosimeters
- Internal Dosimetry Measures

- Ejected β particles can penetrate skin
- β can be shielded with plastic or aluminum
- Use of more dense materials can produce x-rays
- PPE for shielding and/or block routes of entry
- Radioisotopes can contaminate PPE

Dosimetry

- TLD
- OSLD

- Not a common type of radiation
- Portable sources have heavy shielding
- Engineering controls used in facilities
- Materials can become radioactive
- PPE as shielding and to prevent internal exposure for unsealed sources
- May need to shield for secondary radiation
- Low atomic weight-rich materials, textile composites

Dosimetry

- Solid-state nuclear track
- Portable Neutron Survey

- Provide protection from beam or from contamination from unsealed sources
- External shielding has high atomic number, such as lead

Dosimetry

- TLD
- OSLD

- X-ray are solely external
- High atomic number, such as lead

Dosimetry

- TLD
- OSLD

- Welding masks
- Clothing with SPF
- Sunscreens with SPF
- Glass/plastic

Dosimetry

- Provincially regulated
- Available, but may not be mandated

Good Science in Plain Language® www.radiationsafety.ca

- Danger of burns, generated airborne, or fire
- Eye protection
- Protective clothing
- Air filtration

Dosimetry

- Non-Ionizing
- Not Applicable

- Danger from heat
- Flame resistant/retardant

Dosimetry

- Non-Ionizing
- Not Applicable

Takeaway Points

- PPE and dosimetry
 - Specific to the type of radiation
 - Specific to the situation
 - Part of a complete radiation protection program
- Procedures developed
 - Not arbitrary
 - For protection
- If unsure, ask

How to Find Out More

≡ MENU

• Radiation Safety Officer

- X-ray Safety Officer
- Health and Safety Committee
- CANLII
- References
- RSIC

Radiation Safety Institute of Canada

- The Radiation Safety Institute of Canada is an independent, notfor-profit organization specializing in radiation safety.
- For further information on all types of radiation contact us at:

1-800-263-5803

info@radiationsafety.ca

www.radiationsafety.ca

References/Resources

- Canadian Nuclear Safety Commission. (2018). Proper Care and Use of Personal Dosimeters [Poster]. Ottawa, ON: Author. Retrieved March 10, 2021, from https://nuclearsafety.gc.ca/pubs_catalogue/uploads/proper-care-personal-dosimeterseng.pdf
- Introduction to Dosimetry [February 2012]. Ottawa, ON: Canadian Nuclear Safety Commission. Retrieved March 10, 2021, from https://nuclearsafety.gc.ca/pubs_catalogue/uploads/INFO-0827-Introduction-to-Dosimetry-e.pdf
- Izewska, J., & Rajan, I. (2005). Chapter 03 Radiation Dosimeters. In 1241530410 920899393 E. B. Podgorsak (Ed.), *Radiation Oncology Physics: A Handbook for Teachers and Students*. Vienna, Austria: International Atomic Energy Agency. Retrieved March 10, 2021, from https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1196_web.pdf
- Occupational Radiation Protection: General Safety Guide (IAEA Safety Standards Series No. GSG-7) [October 2018]. Vienna: International Atomic Energy Agency. Retrieved March 10, 2021, from https://www-pub.iaea.org/MTCD/publications/PDF/PUB1785_web.pdf
- Personal Protective Equipment (Practical Radiation Technical Manual 5) [April 2004]. Vienna: International Atomic Energy Agency. Retrieved March 10, 2021, from https://www-pub.iaea.org/MTCD/Publications/PDF/PRTM-5_web.pdf