

# **EMF** and WiFi

Followed by Araguacu Latin Dance Company

**Good Science in Plain Language®** 

#### Radiation Safety Institute of Canada Institut de radioprotection du Canada

### **Webinar Functionality**

- Audio and video
  - Will be from the presenters only
  - Use computer or telephone (call in)
  - Computer seems to give the best sound quality
- Use the "Chat" feature to enter comments
- Use the "Questions" feature to ask questions
- Posted on webinar page
  - Video, Q&A answers, copy of the slides
- Follow up email will be sent
  - Topics covered, time of attendance
- It may be possible to change your Zoom view if the controls are hiding the closed captioning.





- What is EMF?
  - Electricity
  - Magnetism
  - Electromagnetic radiation
- Research and Regulation
  - ITU
  - ICNIRP
  - IARC Monographs
  - WHO
  - IEEE
  - Health Canada
- Sources, Health Effects, & Limits
  - Static Electric
  - Static Magnetic
  - Low Frequency
  - RF EMF
    - WiFi

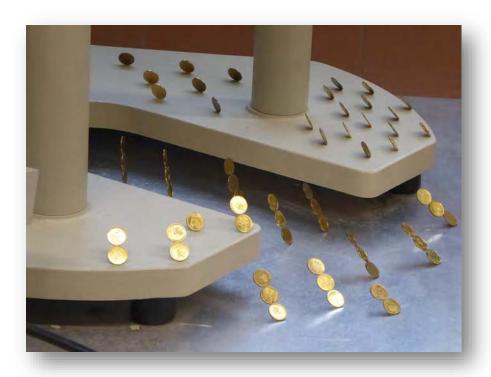
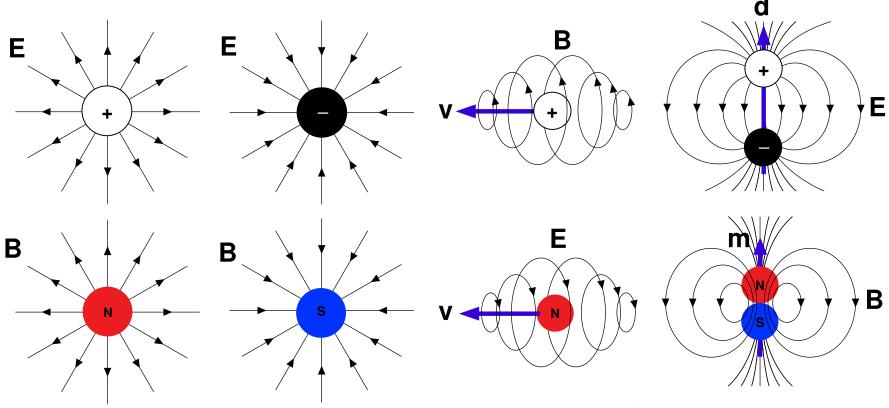
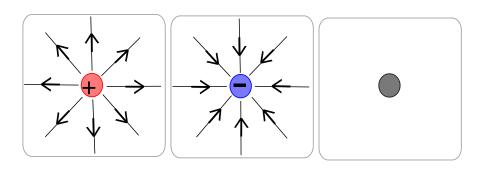




Image by Hzofia74 - Own work, CC BY 4.0








By Maschen - Own work, CC0

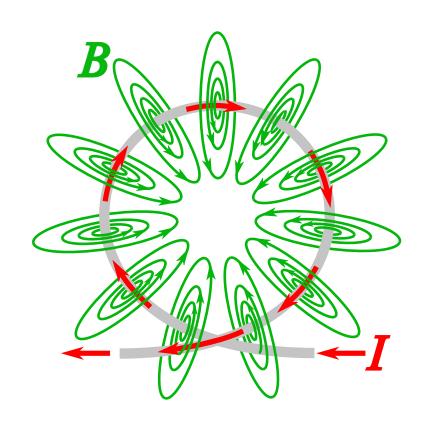


#### What Is Electricity?



- Characteristic of matter
- Electric charges create electric fields
- Fields have different shapes
  - Unit of electric field V/m
- Flow of electrons is called current
  - Symbol: I
  - Unit: ampere (A)




#### **Electric Field Near a Wire**





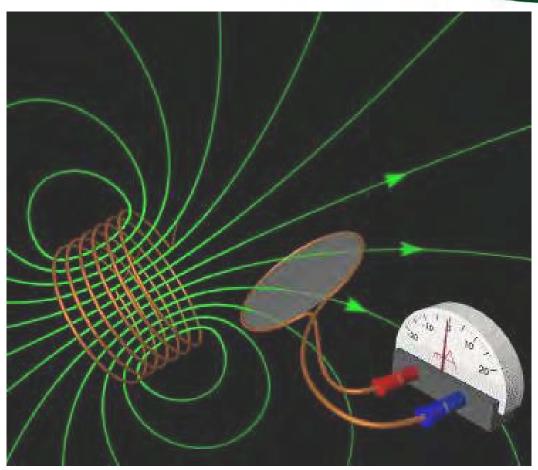
### What Is Magnetism?

- Characteristic of matter
- No magnetic monopole
- Magnetic fields creation
  - Magnets
  - Electric current
  - Changing electric field
- Perpendicular to current flow
- Unit
  - gauss (G)
  - tesla (T)
- Exert magnetic forces



By Chetvorno - Own work, CC0

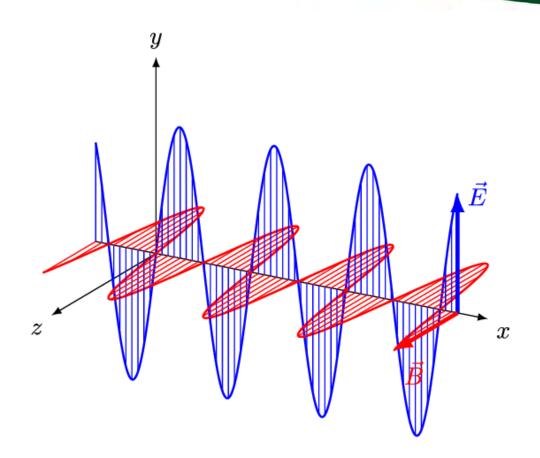



## Magnetic Field in a Wire



This Photo by Unknown Author is licensed under CC BY-NC-ND



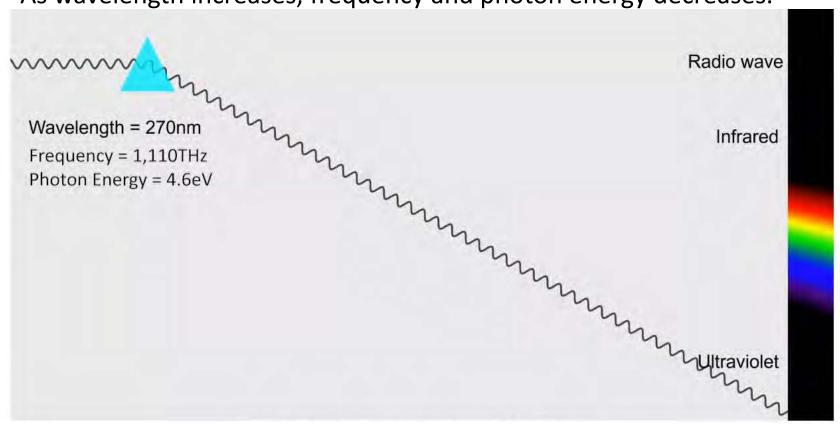

## Electromagnetism



By Ponor - Own work, CC BY-SA 4.0



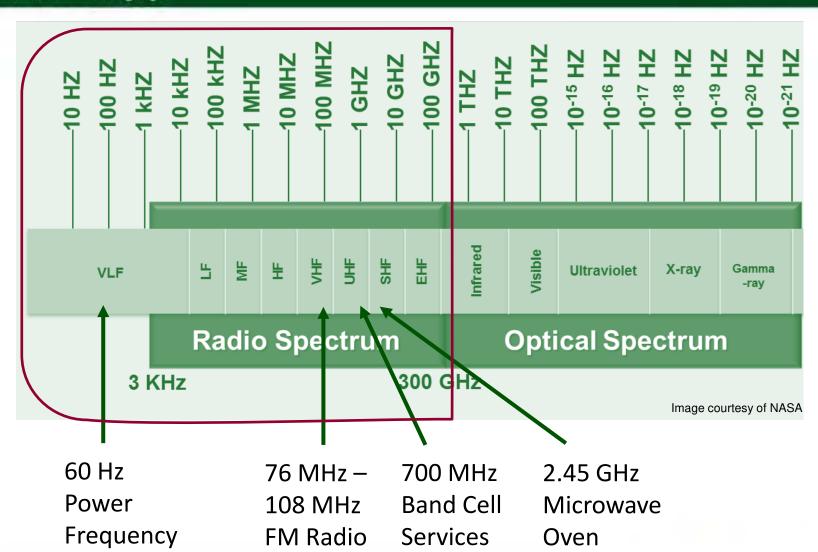
## **Electromagnetic Radiation**




By And1mu - Own work, CC BY-SA 4.0,



# Frequency, Wavelength, Photon Energy


As wavelength increases, frequency and photon energy decreases.



Created with "Electromagnetic Waves around of Visible Rays" simulation by Dongloon, located at JavaLab.org



#### Good Science in Plain Language\*







- United Nations Special Agency
- Allocates Radiofrequency
  - Member States



### **Radiofrequency Spectrum Bands**



#### Good Science in Plain Language\*

| Frequency (MHz)     | Band | Description                    |
|---------------------|------|--------------------------------|
| 0 – 0.000 03        | SELF | Sub-extremely low frequency    |
| 0.000 03 - 0.000 3  | ELF  | Extremely low frequency        |
| 0.000 3 - 0.003     | VF   | Voice frequency                |
| 0.003 - 0.03        | VLF  | Very low frequency             |
| 0.03 – 0.3          | LF   | Low frequency                  |
| 0.3 – 3             | MF   | Medium frequency               |
| 3 – 30              | HF   | High frequency                 |
| 30 – 300            | VHF  | Very high frequency            |
| 300 – 3 000         | UHF  | Ultra high frequency           |
| 3 000 – 30 000      | SHF  | Super high frequency           |
| 30 000 – 300 000    | EHF  | Extremely high frequency       |
| 300 000 – 3 000 000 | SEHF | Supra-extremely high frequency |





- Not-for-profit based in Germany
- Internationally-recognized
- Non-ionizing radiation
- Science-based
- Information is free to public



#### **ICNIRP Guidelines**

INTERNATIONAL COMMISSION ON NON-IONIZING RADIATION PROTECTIO



#### **ICNIRP GUIDELINES**

FOR LIMITING EXPOSURE TO ELECTROMAGNETIC FIELDS (100 kHz to 300 GHz)

PUBLISHED IN: HEALTH PHYS 118(5): 483-524; 2020

PUBLISHED AHEAD OF PRINT IN MARCH 2020: HEALTH PHYS 118(00):000-000; 2020



### Gaps in Knowledge

INTERNATIONAL COMMISSION ON NON-IONIZING RADIATION PROTECTION



#### **ICNIRP STATEMENT**

GAPS IN KNOWLEDGE RELEVANT TO THE "GUIDELINES FOR LIMITING EXPOSURE TO TIME-VARYING ELECTRIC AND MAGNETIC FIELDS (1 HZ–100 KHZ)"

PUBLISHED IN: HEALTH PHYS 118(5):533-542; 2020

## **Gaps in Knowledge**



Good Science in Plain Language\*

| Торіс                        | Robustness                                                                                                                                   | Consistency                                                                                                                                                                                              | Comments                                                                                                                                                                                                    |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pain<br>Perception           | In general, limited and heterogeneous human research showing no effect for most endpoints. Contact current literature is limited to 1 study. | Inconsistent results between human and animal data in general. Contact current literature on pain consists of only one single study.                                                                     | Data gap only identified in relation to contact currents. Further studies on contact currents are therefore recommended.                                                                                    |
| Neurodegenerative<br>Disease | Research in this area is not robust.                                                                                                         | Inconsistent results.                                                                                                                                                                                    | Further epidemiological and experimental studies on Alzheimer's disease and ALS would be useful.                                                                                                            |
| Childhood Leukemia           | Limited research using adequate animal models is not robust. Substantial number of epidemiological studies of ELF-MF and childhood leukemia. | Generally no support for cancer induction or promotion from animal models. Consistent results from epidemiological studies on childhood leukemia indicate increased risk, but weaker findings over time. | Further studies on mechanisms and biological data from childhood leukemia experimental models are recommended. No further epidemiological studies unless a biologically based hypothesis can be formulated. |

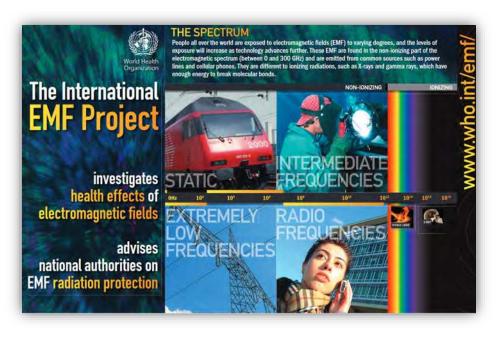
## **Gaps in Knowledge**



Good Science in Plain Language\*

| Topic                                | Robustness                                                                                                                                                     | Consistency                                                                                                                                                                                                                                                           | Comments                                                                                                                                            |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Neural<br>Network<br>Firing Patterns | Well established phenomena.                                                                                                                                    | Wide range of estimates of sensitivities.                                                                                                                                                                                                                             | Uncertainties in precise mechanism and derivation of tissue E-fields implies that actual thresholds could be lower (or higher) than current levels. |
| Free Radical Lifetimes               | Effect of magnetic fields on free radical lifetimes well-established, but at higher field values than reference levels.                                        | The radical par mechanism is the only physically plausible way in which biological systems may be sensitive to low intensity magnetic fields. Observations are far from sufficient to explain predict [sic] health effects an to require consideration of guidelines. | Ongoing research outcomes may motivate revision of conclusions regarding relevance to standard-setting.                                             |
| Dosimetry &<br>Modelling             | A certain number of reports on MF exposure, but not robust in some cases. Limited research on ELF exposure, contact current and non-sinusoidal wave exposures. | Some inter-comparison between models, but more needed. More critical examination of assumptions made required.                                                                                                                                                        | Considerable gaps remain (see text for specific details)                                                                                            |

# Radiation Safety Institute of Canada Institut de radioprotection du Canada

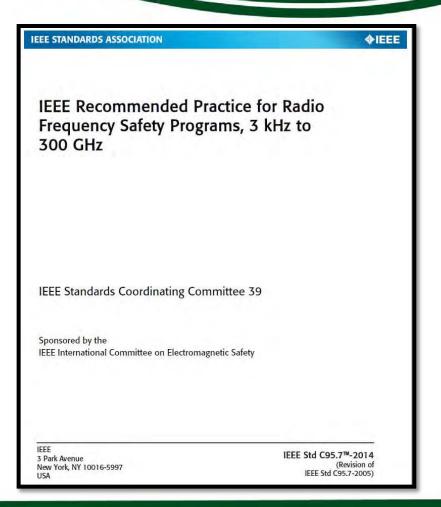

### **IARC** Monographs

- International Agency for Research on Cancer
- Monographs on Carcinogenic Hazards
  - Group 1: Carcinogenic to humans (121)
  - Group 2A: Probably carcinogenic to humans (89)
  - Group 2B: Possibly carcinogenic to humans (318)
  - Group 3: Not classifiable as to its carcinogenicity to humans (499)



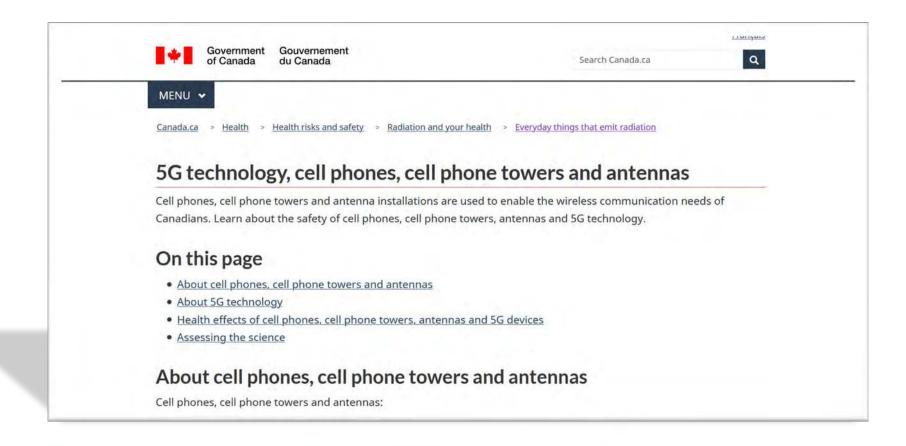


#### **World Health Organization**




- Information as Health Topic
- EMF Project
  - Response to concerns
  - Assess scientific literature
  - Identify gaps
  - Encourage focused research
  - Incorporate research results into monographs
  - Facilitate the development of standards
  - Provide information on management to national and other authorities
  - Provide advice about hazards






- World's largest technical professional organization
- Reputable source
- Numerous standards available
  - Free and paid service





#### **Health Canada**





### **Biological vs. Health Effects**

## **Biological Effect**

- Biological system
- Change in response to a stimulus

### Health Effect

- A type of biological effect
- Causes detectable impairment of health

#### **Static Electric**





- Do not change in intensity or direction over time
- Created by
  - Static charges
  - Constant DC current
- Examples
  - Static electricity in hair
  - DC transmission lines
  - Cathode ray tube (CRT) TVs and monitors
  - Natural electric field of Earth

Ken Bosma from Green Valley, Arizona, USA, CC BY 2.0

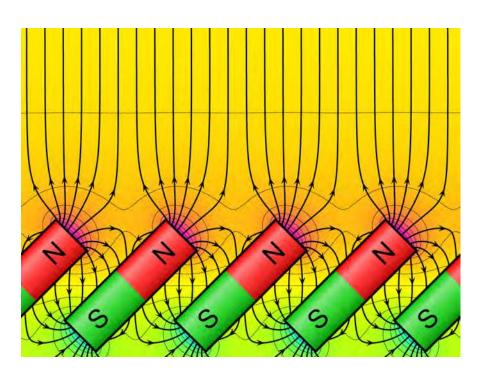


# **Static Electric: Health Effects**




- Do not penetrate the body
- Surface electric charge
- Spark discharges
  - Stress
- Can charge particles in the air
  - May raise exposure to air pollution, but unlikely
- Large static buildup could lead to a strong discharge which could burn or interrupt heart
  - Lightning or large static discharge

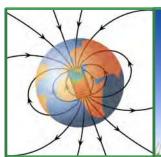



# Static Electric: Exposure Limits

- Can shield or ground to remove excess static electricity
- Minimize exposure to microshocks
  - Lower stress
- Do not work outdoors or in areas if there is a chance of lightning or large static electric charge buildup



# Radiation Safety Institute of Canada Institut de radioprotection du Canada


### **Static Magnetic**



- Do not change in intensity or direction over time
- Not able to shield
  - But can bend the field (magnetic shielding)
- Created by
  - Magnets
  - Moving charges
  - Changing electric fields



# Static Magnetic: Source Examples



Earth's Magnetic Field

- ~50 uT
- Range ~30 70 μT



High DC Transmission Lines

• 20 µT



#### Fast Passenger Trains

- Based on magnetic levitation
- Inside cabin below 100 μT
- Localized field near floor can be several mT



Household magnets

 Local fields in excess of 0.5 mT



#### MRI

- 0.15 to 3 T
- fMRI research up to 10T



Industrial uses

 Few mT to 10s of mT.

Image attributions at the end of the deck.



# Static Magnetic: Health Effects

- Biological effects
  - Will affect movement electrically charged particles and cells in the blood
  - Strong fields can give transient vertigo and nausea
  - Not health effects, per se, but annoying or upsetting
- No evidence for adverse health effects for exposures to fields up to 8T
  - Except possibly hand-eye coordination and visual contrast





# **Static Magnetic: Exposure Limits**

| Exposure Characteristics         | Magnetic Flux Density Limits of Exposure |  |  |
|----------------------------------|------------------------------------------|--|--|
| Occupational                     |                                          |  |  |
| Exposure of head and of trunk    | 2T                                       |  |  |
| Exposure of limbs                | 8T                                       |  |  |
| General Public                   |                                          |  |  |
| Exposure to any part of the body | 400 mT                                   |  |  |



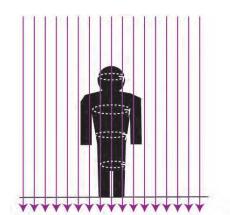
## **EMF Operating Frequency**

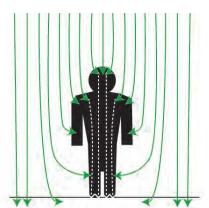
| Equipment         | Frequency | Description             | Band |
|-------------------|-----------|-------------------------|------|
| Appliances        | 60 Hz     | Extremely low frequency | ELF  |
| Induction heaters | 3 MHz     | Medium frequency        | MF   |
| RF heat sealers   | 30 MHz    | High frequency          | HF   |
| FM radio          | 300 MHz   | Very high frequency     | VHF  |
| Wi-Fi             | 2.4 GHz   | Ultra high frequency    | UHF  |



# Low Frequency EMF: Sources

| Equipment          | Mag<br>field (mG) |
|--------------------|-------------------|
| Copy<br>machines   | 20                |
| Fluorescent lights | 6                 |


Source: US EPA, 1992




This Photo by Unknown Author is licensed under CC BY



# Low Frequency EMF: Health Effects





Magnetic field lines are in purple; electric field lines in green; and induced currents are in dashed white.

- Induced currents
- Above threshold reversible effects
  - Faint light flickering in peripheral vision
  - Electric charge effects on the skin
  - Tingling sensation due to stimulation of nerves and muscles
- Higher levels
  - Irreversible cardio-vascular effects
  - Tissue burns
- Overall research has not shown long-term low-level LF exposure has detrimental health effects

### **Low Frequency EMF: Exposure Limits**



Good Science in Plain Language\*

|                         | Exposure Characteristic      | Frequency Range | Internal Electric<br>Field (V/m) |
|-------------------------|------------------------------|-----------------|----------------------------------|
|                         | CNS tissue of the head       | 1 – 10 Hz       | 0.5/f                            |
| sure                    |                              | 10 – 25 Hz      | 0.05                             |
| Occupational Exposure   |                              | 24 – 400 Hz     | 0.002 f                          |
| onal                    |                              | 400 Hz – 3 kHz  | 0.8                              |
| ıpati                   |                              | 3 kHz – 10 MHz  | 0.00027 f                        |
| 000                     | All tissues of head and body | 1 – 3 Hz        | 0.8                              |
|                         |                              | 3 Khz – 10 MHz  | 0.00027 f                        |
| <b>a</b> )              | CNS tissue of the head       | 1 – 10 Hz       | 0.1/f                            |
| osure                   |                              | 10 – 25 Hz      | 0.01                             |
| Expo                    |                              | 24 – 1000 Hz    | 0.0004 f                         |
| ublic                   |                              | 1000 Hz – 3 kHz | 0.4                              |
| ral P                   |                              | 3 kHz – 10 MHz  | 0.000135 f                       |
| General Public Exposure | All tissues of head and body | 1 – 3 Hz        | 0.4                              |
|                         |                              | 3 Khz – 10 MHz  | 0.000135 f                       |



### Radiofrequency EMF



- 100 kHz 300 GHz
- Unit: W/m<sup>2</sup> or W/kg
- Medical
- Heating
- Wireless power transfer
- Industrial
- Communications



# **Telecommunications Industry**



- Towers and antennas
- Radar systems
- Pagers
- Cordless telephones
- Satellite communications
- Radio communications
- Mobile phones and base stations



### Radiofrequency EMF: Health Concerns

- Decades of research
- Heating of exposed tissue
  - Only substantiated effect
- Above a threshold, heatstroke and burns
- Extensively studied
- Below a threshold, unlikely any adverse health effects.
- ICNIRP uses reduction factors in exposure guidelines to account for uncertainty
- IARC Monograph Class 2B





# Radiofrequency EMF: Exposure Limits

Table 3. Basic restrictions for electromagnetic field exposure from 100 kHz to 300 GHz, for integrating intervals >0 to <6 min.<sup>a</sup>

| Exposure scenario | Frequency range    | Local Head/Torso<br>SA (kJ kg <sup>-1</sup> ) | Local Limb<br>SA (kJ kg <sup>-1</sup> )  | Local U <sub>ab</sub> (kJ m <sup>-2</sup> ) |
|-------------------|--------------------|-----------------------------------------------|------------------------------------------|---------------------------------------------|
| Occupational      | 100 kHz to 400 MHz | NA                                            | NA.                                      | NA                                          |
|                   | >400 MHz to 6 GHz  | 3.6[0.05+0.95(t/360) <sup>0.5</sup> ]         | 7.2[0.025+0.975(t/360) <sup>0.5</sup> ]  | NA.                                         |
|                   | >6 to 300 GHz      | NA                                            | NA.                                      | 36[0.05+0.95(t/360) <sup>0.5</sup> ]        |
| General public    | 100 kHz to 400 MHz | NA                                            | NA.                                      | NA                                          |
|                   | >400 MHz to 6 GHz  | 0.72[0.05+0.95(#360)0.5]                      | 1.44[0.025+0.975(t/360) <sup>0.5</sup> ] | NA                                          |
|                   | >6 to 300 GHz      | NA                                            | NA.                                      | 7.2[0.05+0.95(±/360) <sup>0.5</sup> ]       |

#### Note:

- 1, "NA" signifies "not applicable" and does not need to be taken into account when determining compliance.
- 2. t is time in seconds, and restrictions must be satisfied for all values of t between >0 and <360 s, regardless of the temporal characteristics of the exposure itself.</p>
- Local SA is to be averaged over a 10-g cubic mass.
- 4. Local U<sub>ab</sub> is to be averaged over a square 4-cm<sup>2</sup> surface area of the body. Above 30 GHz, an additional constraint is imposed, such that exposure averaged over a square 1-cm<sup>2</sup> surface area of the body is restricted to 72[0.025+0.975(t/360)<sup>0.5</sup>] for occupational and 14.4[0.025+0.975(t/360)<sup>0.5</sup>] for general public exposure.
- Exposure from any pulse, group of pulses, or subgroup of pulses in a train, as well as from the summation of exposures (including non-pulsed EMFs), delivered in rs, must not exceed these levels.

#### Radiation Safety Institute of Canada

#### Good Science in Plain Language\*

Table 1 Limits for general public (lower tier) in ICNIRP and IEEE

|                   | Frequency range     | Incident power density                                    | Averaging            | Averaging time                 |
|-------------------|---------------------|-----------------------------------------------------------|----------------------|--------------------------------|
|                   |                     |                                                           | area                 |                                |
| ICNIRP (1998)     | 2-10 GHz            | 10 W/m <sup>2</sup>                                       |                      | 6 min                          |
|                   | 10-300 GHz          | 10 W/m <sup>2</sup>                                       | 20 cm <sup>2</sup>   | Decrease from 6 min to 10 s    |
|                   | 0                   | (200 W/m²)                                                | (1 cm <sup>2</sup> ) |                                |
| IEEE (2005)       | Whole Body Expos    | ure                                                       |                      |                                |
|                   | 5-30 GHz            | 10 W/m <sup>2</sup>                                       | $100 \lambda^2 *$    | Decrease from 30 min to 5 min  |
|                   | 30-100 GHz          | 10 W/m <sup>2</sup>                                       | 100 cm <sup>2</sup>  | Decrease from 5 min to 2.8 min |
|                   | 100-300 GHz         | Increase from 10 W/m $^2$ to 100 W/m $^2$                 | 100 cm <sup>2</sup>  | Decrease from 2.8 min to 10 s  |
|                   | Local Exposure      |                                                           |                      |                                |
|                   | 3-30 GHz            | Increase from 40 W/m <sup>2</sup> to 200 W/m <sup>2</sup> | peak                 | Decrease from 30 min to 5 mi   |
|                   | 30-300 GHz          | 200 W/m <sup>2</sup>                                      |                      | Decrease from 5 min to 10 s    |
| ICNIRP (2019)     | Whole Body Expos    | ure                                                       |                      |                                |
|                   | 2-300 GHz           | 10 W/m <sup>2</sup>                                       |                      | 30 min                         |
|                   | Local Exposure      |                                                           |                      |                                |
|                   | 6-300 GHz           | Decrease from 40 W/m² to 20 W/m²                          | 4 cm <sup>2</sup>    | 6 min                          |
|                   | 30-300 GHz          | Decrease from 60 W/m² to 40 W/m²                          | 1 cm <sup>2</sup>    | 6 min                          |
| IEEE C95.1 (2019) | Whole Body Exposure |                                                           |                      |                                |
|                   | 2-300 GHz           | 10 W/m <sup>2</sup>                                       |                      | 30 min                         |
|                   | Local Exposure      |                                                           |                      |                                |
|                   | 6-300 GHz           | Decrease from 40 W/m² to 20 W/m²                          | 4 cm <sup>2</sup>    | 6 min                          |
|                   | 30-300 GHz          | Decrease from 60 W/m <sup>2</sup> to 40 W/m <sup>2</sup>  | 1 cm <sup>2</sup>    | 6 min                          |

<sup>\*</sup>  $\lambda$  means the free space wavelength



# Radiation Safety Institute of Canada

• The Radiation Safety Institute of Canada is an independent, notfor-profit organization specializing in radiation safety.

• For further information on all types of radiation contact us at:

1-800-263-5803

info@radiationsafety.ca

www.radiationsafety.ca



### **Slide 29 Image Attributions**

- · Earth's magnetic field
  - By File:VFPt Earths Magnetic Field Confusion.svg: Geek3 / derivative work: MikeRun This file was derived from: VFPt Earths Magnetic Field Confusion.svg:earth shape taken from Earth clip art.svg:, CC BY-SA 3.0
- Transmission Tower
  - Stock photo
- Fast Passenger Trains
  - ion66, CC BY 3.0 https://creativecommons.org/licenses/by/3.0
- MRI
  - Unknown author licensed under CC BY-SA
- Horseshoe Magnet
  - Eurico Zimbres FGEL/UERJ, CC BY-SA 2.0 BR <a href="https://creativecommons.org/licenses/by-sa/2.0/br/deed.en">https://creativecommons.org/licenses/by-sa/2.0/br/deed.en</a>
- Industrial Magnet
  - Internet Archive Book Images, No restrictions, via Wikimedia Commons